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Introduction
Designing cities to promote active travel is a 
potential strategy to improve public health 
(HUD 2012; Nieuwenhuijsen and Khreis 
2016). Two health-relevant factors associ-
ated with the built environment are physical 
activity and air quality (Abrams et al. 2012; 
Frank et al. 2006). Most prior research has 
isolated the built environment’s effects on 
these factors separately; a recent literature 
review emphasizes that assessing how the 
spatial patterns of these factors overlap and 
are distributed in urban areas is an important 
yet understudied question (Giles and Koehle 
2014). Our research aims to help fill this gap.

Dense, walkable neighborhoods are asso-
ciated with increased physical activity (Frank 
et al. 2005), partially owing to increased active 
travel [i.e., cycling and walking (Hankey et al. 
2012; Oakes et al. 2007)]. Emerging research 
focuses on describing patterns of bicycle and 
pedestrian traffic on transportation networks—
for example, designing traffic count programs 
(Hankey et al. 2014; Nordback et al. 2013) 
and building facility–demand models (Hankey 
and Lindsey 2016; Miranda-Moreno and 
Fernandes 2011; Schneider et al. 2012). Those 

findings highlight research and policy ques-
tions about how best to provide safe, health-
promoting infrastructure for active travel 
(Loukaitou-Sideris et al. 2014; McDonald et al. 
2014; Wilson et al. 2010).

Epidemiologic studies suggest that 
within-city spatial patterns of air pollution 
are important for health (Beelen et al. 2014; 
Crouse et al. 2015; Miller et al. 2007). 
Urban air quality is associated with the built 
environment (Bechle et al. 2011; Hankey 
et al. 2012; Stone et al. 2007), and trans-
port micro-environments—especially while 
cycling or walking—are important exposure 
pathways (Dons et al. 2012; Int Panis et al. 
2010). Exposure to traffic-related air pollu-
tion during active travel has been linked to 
a number of health indicators (Cole-Hunter 
et al. 2016; Kubesch et al. 2015; Strak et al. 
2010; Weichenthal et al. 2011, 2014), and 
exploratory studies have assessed individual-
level exposure on cycling routes (Cole-Hunter 
et al. 2012; Jarjour et al. 2013).

A few studies have explored spatial inter-
actions between neighborhood “walkability” 
(i.e., characteristics in a neighborhood that 
may influence a resident’s likelihood of 

walking) and ambient air pollution concen-
trations (Frank and Engelke 2005; Hankey 
et al. 2012; Marshall et al. 2009); we are not 
aware of studies that compared spatial patterns 
of “bikeability” and ambient air pollution. 
The walkability-based studies found that few 
places in urban areas have both low levels of air 
pollution and high walkability (“sweet-spot” 
locations). Several health impact assessments 
have found that the individual-level health 
benefits (i.e., physical activity) outweigh risks 
(i.e., air pollution, accidents) for hypothetical 
shifts to active travel (de Hartog et al. 2010; 
Doorley et al. 2015; Macmillan et al. 2014; 
Mueller et al. 2015; Rojas-Rueda et al. 2011). 
However, an understudied topic is the relative 
exposure of population-level flows of cyclists 
and pedestrians to air pollution [i.e., exposure 
where people actually walk and bike (traffic 
flows) rather than the characteristics of neigh-
borhoods that influence their likelihood to 
walk (“walkability”) or bike (“bikeability”)]. 
[Several prior studies explore walkability and 
bikeability (Cole-Hunter et al. 2015; Frank 
et al. 2006; Winters et al. 2013).]

In this paper we used model-derived 
spatial estimates of bicycle and pedestrian 
traffic volumes and particulate air pollution 
concentrations in Minneapolis, Minnesota, 

Address correspondence to S. Hankey, School of 
Public and International Affairs, Virginia Tech, 140 
Otey St., Blacksburg, VA 24061 USA. Telephone: 
(540) 231-7508. E-mail: hankey@vt.edu

Supplemental Material is available online (http://
dx.doi.org/10.1289/EHP442).

We thank Y. Akita for use of his ArcGIS tools and 
S. Blenski for assembling bicycle and pedestrian counts. 

This article was developed in part under Assistance 
Agreement no. RD83587301 awarded by the U.S. 
Environmental Protection Agency (EPA). 

This article has not been formally reviewed by the 
U.S. EPA. The views expressed in this document are 
solely those of the authors and do not necessarily 
reflect those of the agency. The U.S. EPA does not 
endorse any products or commercial services men-
tioned in this publication.

The authors declare they have no actual or potential 
competing financial interests.

Received: 2 May 2016; Revised: 10 August 2016; 
Accepted: 19 August 2016; Published: 7 October 2016.

Note to readers with disabilities: EHP strives 
to ensure that all journal content is accessible to all 
 readers. However, some figures and Supplemental 
Material published in EHP articles may not conform to 
508 standards due to the complexity of the information 
being presented. If you need assistance accessing journal 
content, please contact ehponline@niehs.nih.gov. 
Our staff will work with you to assess and meet your 
 accessibility needs within 3 working days.

Population-Level Exposure to Particulate Air Pollution during Active Travel: 
Planning for Low-Exposure, Health-Promoting Cities
Steve Hankey,1 Greg Lindsey,2 and Julian D. Marshall3

1School of Public and International Affairs, Virginia Tech, Blacksburg, Virginia, USA; 2Humphrey School of Public Affairs, University 
of Minnesota, Minneapolis, Minnesota, USA; 3Department of Civil and Environmental Engineering, University of Washington, Seattle, 
Washington, USA

Background: Providing infrastructure and land uses to encourage active travel (i.e., bicycling and 
walking) are promising strategies for designing health-promoting cities. Population-level exposure 
to air pollution during active travel is understudied.

oBjectives: Our goals were a) to investigate population-level patterns in exposure during active 
travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; 
and b) to assess how those exposure patterns are associated with the built environment.

Methods: We employed facility–demand models (active travel) and land use regression models 
(particulate concentrations) to estimate block-level (n = 13,604) exposure during rush-hour 
(1600–1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify 
land use patterns and characteristics of the street network that are health promoting. We also assessed 
how exposure is correlated with indicators of health disparities (e.g., household income, proportion 
of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather 
than the probability of walking or biking (i.e., “walkability” or “bikeability”) to assess exposure.
results: Active travel often occurs on high-traffic streets or near activity centers where particulate 
concentrations are highest (i.e., 20–42% of active travel occurs on blocks with high population-level 
exposure). Only 2–3% of blocks (3–8% of total active travel) are “sweet spots” (i.e., high active 
travel, low particulate concentrations); sweet spots are located a) near but slightly removed from 
the city-center or b) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where 
shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by 
~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; 
particulate concentrations were mostly unchanged with land use.
conclusions: Public health officials and urban planners may use our findings to promote healthy 
transportation choices. When designing health-promoting cities, benefits (physical activity) as well 
as hazards (air pollution) should be evaluated.
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to assess population-level patterns of exposure 
during active travel. We identified areas that 
are overall health-promoting and explored 
aspects of how best to design low-exposure 
transportation networks and neighborhoods 
(e.g., moving bicycle facilities away from 
high-traffic roads). Our analysis is one of the 
first to assess urban-scale exposure based on 
spatial estimates of actual rates of active travel 
(rather than “walkability”/“bikeability”). Our 
findings inform efforts to promote healthy 
transportation planning decisions, especially 
for approaches that encourage active travel 
on high-traffic roads (see the discussion of 
“Complete Streets,” below).

Methods
Our analysis is based on previously published 
modeling approaches for Minneapolis: 
a) facility–demand models of bicycle and 
pedestrian traffic volumes (Hankey and 
Lindsey 2016) and b) land use regression 
(LUR) models of on-road particulate air pollu-
tion concentrations (Hankey and Marshall 
2015). We used these models to generate 
estimates of active travel and particulate air 
pollution for every block in Minneapolis 
(n = 13,604) during the afternoon rush hour 
(1600–1800 hours). (Particulate measure-
ments and traffic counts used to develop these 
models were collected during the afternoon 
and in autumn; thus, our results should be 
interpreted for this time period.) We assessed 
how exposure varies by characteristics of the 
road network and features of the built envi-
ronment. Our approach offers unique insight 
into designing health-promoting cities in 
two ways: a) Our model-derived estimates of 
active travel describe where people actually 
walk or bike (rather than “walkability” or 
“bikeability”), and b) our LUR models are 
able to discern small-scale changes in particu-
late concentrations (i.e., spatial resolution: 
~ 100 m) that a sparsely distributed regulatory 
monitor network cannot. By comparing the 
spatial patterns of active travel and particulate 
concentrations we were able to assess patterns 
of population-level exposure (i.e., for all 
walkers and bikers).

Spatial Models of Bicycle and 
Pedestrian Traffic
Our spatial estimates of bicycle and pedes-
trian traffic are derived from facility–demand 
models that estimate traffic volumes based 
on land use, demographic, and weather-
related variables (Hankey and Lindsey 2016) 
(Table 1). The models use afternoon rush-
hour (1600–1800 hours) volunteer-based 
counts (954 observations; 471 locations; 
years 2007–2014) of cyclists and pedestrians 
(collected by the City of Minneapolis) as 
the dependent variable; few traffic counts 
were available for other time periods. We 

assembled independent variables (e.g., land 
use, demographic) at each count location based 
on network buffers of varying spatial scale; 
conventional stepwise linear regression was 
used for model-building. Model adjusted R2 
was 0.46 (0.50) for the bicycle (pedes-
trian) models. For further details on model 
 development see Hankey and Lindsey (2016).

Spatial Models of Air Quality
We applied previously published LUR models 
to estimate afternoon rush-hour (1600–1800 
hours) particulate concentrations for all 
streets and trails in Minneapolis (Hankey 
and Marshall 2015) (Table 1). We measured 
and modeled three aspects of particulate air 
pollution: a) particle number (PN) concen-
tration, a representation of ultrafine particles; 
b) black carbon (BC) mass concentration; and 
c) fine particulate matter (≤ 2.5 μm; PM2.5) 
mass concentration. The LUR model building 
employed two main inputs: a) mobile moni-
toring (i.e., measurements made while cycling 
along prescribed routes) during afternoon 
(1600–1800 hours) rush hour and b) land use 
variables assembled at varying spatial scales. 
The LUR models predict concentrations for 
surface streets and for off-street trails. We do 
not make predictions for on-freeway concentra-
tions (walking and biking are typically illegal on 
highways); however, all street types (including 
length of freeway miles within a buffer) were 
included as potential variables during model-
building). Adjusted R2 values for the models 
were 0.42–0.49 among the pollutants. To 
match the estimates of air pollution and active 
travel, we estimated concentrations at the 
midpoint of each street segment (mean block 
length in Minneapolis, ~ 120 m) resulting in 
13,604 point estimates of particulate concentra-
tions, bicycle traffic, and pedestrian traffic for 
use in our spatial comparison.

Spatial Analyses of Exposure 
During Active Travel
We performed three analyses to inform 
planning decisions on the built environ-
ment, infrastructure, and health promotion: 
a) identify “sweet spot” (i.e., high active 
travel and low particulate concentration) 
city blocks; b) explore trends in population-
level exposure by characteristics of the road 
network (e.g., street functional class; proxi-
mity to major roads) to inform design of low-
exposure bicycle and pedestrian networks; and 

c) assess whether features of the built envi-
ronment (e.g., population density, land use 
mix, open space, retail area) and indicators 
of health disparities (e.g., household income, 
proportion of nonwhites) are correlated with 
exposure during active travel.

Identifying “sweet spot” neighborhoods. 
A core motivation for combining outputs 
from our models was to explore patterns of 
population-level rather than individual-level 
exposure during active travel. For example, 
if one is only interested in individual-level 
exposure (e.g., when choosing a cycling route 
or estimating exposure for survey partici-
pants), then a concentration surface is suffi-
cient information. However, a key question 
is how exposure patterns change at the popu-
lation level. For example, when considering 
population health (or disparities in health), 
an area with moderate concentrations and 
high levels of active travel could be more 
important than an area with high concentra-
tions but few people. To explore this issue 
we mapped four types of city blocks based on 
highest/lowest quartiles for model-generated 
estimates of particulate concentrations and 
rates of active travel: a) “sweet spot” (high 
active travel, low particulate concentration); 
b) “sour spot” (low active travel, high particu-
late concentration); c) “active and exposed” 
(high active travel, high particulate concentra-
tion); and d) “inactive and clean” (low active 
travel, low particulate concentration). We 
compared commonalities within neighbor-
hood types that may inform design of “sweet 
spot” neighborhoods.

Designing low-exposure bicycle and 
pedestrian networks. We explored trends in 
exposure during active travel that may be 
important for designing low-exposure bicycle 
and pedestrian networks. We stratified our 
model output by street functional class and 
proximity to major roads, with the goal of 
identifying where small shifts in bicycle and 
pedestrian infrastructure (e.g., locating cycling 
infrastructure away from high-traffic roads) 
may yield reductions in exposure. Identifying 
the exposure impact of these shifts may help 
policy makers choose between strategies that 
call for encouraging active travel on high-traffic 
roads (e.g., see “Complete Streets” discussion 
below) versus on residential streets (e.g., bicycle 
boulevards) or off-street trails. We identified 
and mapped blocks that met the following 
criteria: a) were on local roads within 200 m 

Table 1. Spatial models used here to estimate particulate concentrations and rates of active travel.

Study Dependent variable Observations Model output Model adj R2

Hankey and Lindsey 2016a Bicycle counts 
Pedestrian counts

957 (471 locations) Bicycle and pedestrian 
traffic volumes

Bike: 0.46
Ped: 0.50

Hankey and Marshall 2015a Concentrations of 
particulate matter

1,101 locations along 
mobile routes

Concentrations of particle 
number (PN), black 
carbon (BC), and PM2.5

PN: 0.48 
BC: 0.42 

PM2.5: 0.49
aModels are based on data collected in the autumn and during afternoon rush-hour 1600–1800 hours.
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(i.e., the 75th percentile of block length in 
Minneapolis; mean block length is ~ 120 m) 
of a high-traffic road (i.e., a road classified 
as arterial or collector), and b) relative to the 
nearest high-traffic road, had at least a 15% 
reduction in PN or BC concentrations.

Health-promoting features of the built 
environment. We stratified our model esti-
mates by two types of built environment 
variables to assess patterns of exposure: a) vari-
ables commonly used in “walkability” indices 
(e.g., population density, land use mix) and 
b) land use variables that were correlated with 
active travel in our facility–demand models 
(e.g., open space, retail, and industrial area). 
See Table S1 for a summary of the land 
use variables.

An important aspect of planning for health-
promoting cities is to ensure that healthy neigh-
borhoods are distributed equitably among the 
population. Following previous studies (Brooks 
and Sethi 1997; Clark et al. 2014; Marshall 
2008; Miranda et al. 2011; Schweitzer and 
Zhou 2010), we stratified our model results by 
household income and race to inform whether 
health disparities exist for our population (i.e., 
pedestrians and cyclists).

Results
To summarize our findings, we first describe 
the raw model output: spatial patterns in 
active travel and air pollution concentra-
tions; then we explore how combining 
model outputs can inform planning of 

health-promoting cities. Descriptive statistics 
of the model output are in Table S2.

Spatial Patterns of Bicycling and 
Walking
We generated estimates of rush-hour 
(1600–1800 hours) bicycle and pedestrian 
traffic for all streets and trails in Minneapolis 
(Figure 1). As expected, given the significance 
of variables in the models, the maps reflect the 
importance of street functional class (higher 
traffic on arterials and collectors) and features 
of the built environment (e.g., higher traffic 
near retail areas and open space). These maps 
also highlight differences between bicycle and 
pedestrian traffic: a) Off-street trails gener-
ally have larger relative volumes for cyclists 
than for pedestrians, and b) pedestrian traffic 
is more tightly clustered around retail corri-
dors and activity centers [e.g., near the Central 
Business District (CBD) and along major 
transportation corridors] than is bicycle traffic. 
In general, rates of active travel were greatest 
near the CBD and decreased as a function of 
distance from the CBD. Figure 1 also shows 
spatial variability in bicycle and pedestrian 
traffic for a sample transect across the city. 
The transect plot highlights that the largest 
differences in traffic are between locations near 
the CBD and outer-lying locations; local vari-
ability among street-types (i.e., major vs. local 
streets) and facility types (e.g., streets with 
no bike facility vs. streets with a bike lane or 
off-street trail) are also noticeable.

Spatial Patterns of Particulate Air 
Pollution
Model-generated estimates of afternoon 
rush-hour particulate concentrations are 
shown in Figure 1 (concentrations along the 
same transect used for bicycle and pedestrian 
traffic are also shown for each pollutant). 
Concentrations are more spatially variable 
for PN and BC than for PM2.5. In general, 
concentrations are elevated in areas with dense 
networks of major roads in conjunction with 
activity centers (e.g., freeways near the CBD or 
arterials serving retail corridors), near significant 
emission sources (industrial and railway areas), 
and lower in areas that are farther from traffic 
sources (open space and on low-traffic roads). 
The magnitude of spatial variability differs 
among pollutants, but otherwise the spatial 
patterns are broadly similar among pollutants. 
White spaces in Figure 1 are locations with no 
or few roads (e.g., lakes, rivers, parks, railways).

Spatial Analyses of Exposure 
During Active Travel
We next present our three spatial analyses 
based on stratifying model output by attri-
butes of neighborhood built environment, 
infrastructure, and demographics. We then 
discuss how analyses that account for both 
health determinants simultaneously could be 
used to plan for health-promoting cities.

Identifying “sweet spot” neighborhoods. 
A small proportion of blocks are “sweet 
spot” (2–3%) or “sour spot” (3–7%); more 

Figure 1. Spatial estimates of active travel and particulate air pollution for afternoon (1600–1800 hours) rush-hour in Minneapolis, MN. Abbreviations: BC, black 
carbon; PN, particle number; pt, particle. A sample transect shows spatial variability of each pollutant and mode. The transect plots (right-panel) correspond to 
tracing the transect from point A (left) to point B (right). Underlying street and land use data are from Minnesota Geospatial Commons (https://gisdata.mn.gov/). 
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blocks were classified as “active and exposed” 
(9–11%) or “inactive and clean” areas 
(9–12%). [If pollution and physical activity 
were spatially uncorrelated, then each of 
the four groups in the previous sentence 
would occupy 6% (i.e., 1/16) of the blocks.] 
An important finding is that a significant 
proportion of active travel occurs on “active 
and exposed” blocks (20–44%); more active 
travel occurs on sweet spot (3–9%) blocks 
than on sour spot (1–2%) blocks. “Sweet 
spot” blocks were located a) near, but just 
outside, the CBD or b) on off-street trails 
near lakes or parkways. These findings are 
consistent with previous studies of walkability 
and air pollution in Vancouver, BC, Canada 

(Marshall et al. 2009) and Los Angeles, 
California (Hankey et al. 2012). Table 2 gives 
a summary of each neighborhood category; 
Figure 2 maps each category for locations 
that met inclusion criteria for two of the three 
pollutants (see Figures S1–S3 for maps of 
individual pollutants).

Most blocks (~ 72%) and most of 
the active travel [~ 50% (walking), ~ 65% 
(biking)] did not fall into any of the four 
categories defined in Table 2. [If travel and 
pollution were spatially uncorrelated, 75% 
of blocks or of travel (i.e., 12/16) would not 
fall into any of the four categories.] Analyses 
above highlight areas that do especially well 
(or poorly) for each factor (i.e., active travel 

or air pollution); however, blocks that were 
unclassified (i.e., are not in one of the four 
categories) may be important because they 
include places where moderate shifts in one 
factor may push those neighborhoods into 
one of the highlighted groups (e.g., if levels of 
active travel are increased on a road that has 
low particulate concentrations but moderate 
rates of active travel, then that road would 
shift to the “sweet spot” category). Many 
of the unclassified blocks are in residential 
neighborhoods; as such, these places may 
require different strategies to shift patterns 
of exposure. For example, active travel in 
residential areas might be predominantly 
recreational, whereas active travel in the CBD 

Table 2. Blocks defined by spatial patterns of active travel and particulate concentrations.

Block type Active travel Air pollution Mode of travel

Percentage of blocksa Percentage of active travela

PN BC PM2.5 PN BC PM2.5

Sweet spot: high active travel and low exposure to 
air pollution.

Highest 
quartile

Lowest 
quartile

Bicycles 3 2 3 7 5 9
Pedestrians 2 3 3 3 4 4

Active and exposed: high active travel exposures. Highest 
quartile

Highest 
quartile

Bicycles 10 10 9 21 27 20
Pedestrians 11 11 10 44 38 41

Inactive and clean: blocks could benefit from increased 
active travel while keeping pollution low.

Lowest 
quartile

Lowest 
quartile

Bicycles 12 10 11 4 3 3
Pedestrians 11 9 10 3 3 3

Sour spot: blocks with lowest health benefit for active 
travel and pollution.

Lowest 
quartile

Highest 
quartile

Bicycles 3 4 4 1 1 1
Pedestrians 6 5 7 2 1 2

All other areas: blocks not classified in one of the 
four categories above.

— — Bicycles 72 74 73 67 64 67
Pedestrians 70 73 70 48 54 50

aIn each cell for percentage of blocks and percentage of active travel, values for bicycles are the top value, and pedestrians the bottom value.

Figure 2. Block type as defined in Table 2 for bicycle (left panel) and pedestrian (middle panel) traffic (right panel: land use pattern). Block types were classified 
if inclusion criteria were met for two of three pollutants; see Figures S1–S3 for individual pollutants. Underlying street and land use data are from Minnesota 
Geospatial Commons (https://gisdata.mn.gov/).
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(where exposure is high) might be predomi-
nantly utilitarian. This difference may be 
important for encouraging activities that are 
overall health-promoting.

Designing low-exposure bicycle and pedes-
trian networks. Particulate concentrations and 
active travel are correlated with street func-
tional class (Figure 3). Median bicycle (pedes-
trian) traffic volumes were highest on arterials 
[19/hr (25/hr)] and decrease with street func-
tional class [collectors: 16/hr (19/hr); local: 
11/hr (13/hr)]. Bicycle volumes are highest 
on off-street trails (44/hr; 22/hr for pedes-
trians; Figure S4). Median particulate concen-
trations correlate with motor vehicle traffic. 
Concentration differences between low- and 
high-traffic roads averaged ~ 17% for PN and 
BC, ~ 3% for PM2.5.

In our data, a substantial proportion of 
cycling (29%) and walking (49%) occurs 
on high-traffic roads that are also the most 
polluted. However, it may be possible to 
target shifts in the bicycle and pedestrian 
network to slightly shift spatial patterns of 
active travel and reduce exposure to air pollu-
tion. For example, Minneapolis is currently 
building a network of bicycle boulevards (i.e., 
local roads with traffic-calming measures 

(e.g., speed bumps, bump outs, one-way 
vehicle traffic) that discourage vehicle traffic 
(but do not prohibit it) while encouraging 
bicycle traffic. One question that arises is 
what impact shifting active travel from major 
(high-traffic) roads to adjacent local roads 
may have on exposure. To shed light on 
that question, we summarized bicycle and 
pedestrian traffic, and particulate concentra-
tions by a) major roads and b) local roads at 
specific distances from the nearest major road 
(Figure 3).

Active travel and particulate concentra-
tions are highest on major roads and decrease 
steadily as the distance from a major road 
increases. For the bicycle boulevard example 
described above, shifting traffic over one 
block corresponds to an estimated average 
decrease in afternoon rush-hour exposure 
concentrations of 11% for PN, 19% for BC, 
and 3% for PM2.5. Figure 3 also includes a 
map of blocks that could be candidates for 
shifting active travel away from high-traffic 
roads by our criteria: local roads that are one 
block (i.e., within 200 m) from the nearest 
major road and have a 15% reduction in PN 
or BC concentration relative to that major 
road. This procedure identified 1,721 blocks 

(~ 20% of all local roads) that would be 
potential candidates for shifting active travel 
away from high-traffic roads that would yield 
≥ 15% reductions in air pollution exposure. 
Incorporating this information in decisions 
about how to locate bicycle and pedestrian 
infrastructure may help planners work towards 
the goal of low-exposure networks, especially 
for policies such as “Complete Streets” which 
may not have flexibility to shift funding 
for bicycle and pedestrian infrastructure to 
adjacent corridors.

Health-promoting features of the built 
environment. We stratified our model esti-
mates by two factors commonly cited in 
“walkability” or “bikeability” metrics (popula-
tion density; land use mix), three land use 
factors that were significant in our facility–
demand models (retail, open space, and 
industrial area), and two indicators of health 
disparities (household income, percent of 
nonwhite residents).

Land use mix, population density, open 
space area, and retail area were associated with 
increased active travel (Figure 4). Bicycle and 
pedestrian traffic volumes were about two 
times higher in areas that were in the highest 
(Q4) vs. lowest (Q1) quartile of each variable 

Figure 3. Median bicycle and pedestrian traffic volumes and particulate concentrations (conc.) by street functional class (upper-left panel) and distance from a major 
road (bottom-left panel). Right panel: Locations that are within 200 m of a major road (75th percentile distance for city blocks in Minneapolis) and, relative to that road, 
had at least a 15% reduction in PN or BC concentration. Underlying street and land use data are from Minnesota Geospatial Commons (https://gisdata.mn.gov/).
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suggesting that dense neighborhoods with 
mixed land use, open space, and retail area are 
correlated with higher rates of active travel. 
Particulate concentrations increased with 
increasing land use mix [9% (16%) increase 
for PN (BC) from Q1 to Q4] and retail area 
[12% (15%) increase for PN (BC)]; trends 
were mixed for population density [5% 
increase (PN), 8% decrease (BC)] and open 
space area [2% decrease (PN), 7% increase 
(BC)]. (See Figures S5–S8 for PM2.5 results; 

absolute concentrations are in Figure S9.) 
Although rates of active travel generally 
increased with increased population density, 
the lowest quartile had slightly elevated levels 
of active travel. This result could potentially 
be the result of certain high-use areas being 
located in low density areas, for example, in 
downtown Minneapolis (low number of resi-
dents). Industrial area had overall low rates of 
active travel yet was associated with increased 
particulate concentrations (see Figure S10).

Equitable distribution of access to health-
promoting places is an important health-
promoting policy goal (Clark et al. 2014; 
Miranda et al. 2011; Schweitzer and Zhou 
2010). To explore this issue, we stratified our 
model estimates by median household income 
and proportion of nonwhite residents (see 
Figures S11–S12). Active travel and particu-
late concentrations were moderately higher for 
low-income blocks; neither factor varied much 
by proportion of nonwhite residents. The 

Figure 4. Median bicycle and pedestrian traffic volumes and particulate concentrations (PN and BC) by quartile (Q) of population density, land use mix, open 
space area, and retail area. See Figures S5–S10 for other land uses and pollutants.
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trends by household income may suggest that 
a disproportionate share of the air pollution 
exposure burden during active travel is occur-
ring in low-income neighborhoods. Available 
demographic variables describe the residents 
of a neighborhood, but not  necessarily the 
 population traveling in that location.

Discussion
Our work sheds light on population-level 
spatial patterns of exposure to air pollution 
during active travel that may be important for 
planning low-exposure cities that are overall 
health protective. Our analyses incorporate 
output from existing models of active travel 
and particulate air pollution. A key advantage 
to our approach is that we explored exposure 
patterns based on modeled estimates of traffic 
volumes where people actually walk and 
bike (traffic flows) rather than only physical 
indicators of walkability or bikeability. 
Our spatial models are for specific pollut-
ants, times of day, and months of the year; 
future research could build on our approach 
by developing models with more spatial and 
temporal precision. Additional extensions 
of our research could replicate our results 
in other study locations or evaluate specific 
interventions or policy prescriptions.

We developed models of bicycle and 
pedestrian traffic only for the afternoon 
rush-hour (1600–1800 hours) because traffic 
counts are unavailable for other time periods. 
As a sensitivity analysis we explored an alter-
nate scenario using a morning rush-hour 
(0700–0900 hours) particulate concentra-
tion surface. Spatial variability of air quality 
is greater in magnitude in the morning. 
Using the morning rush-hour particulate 
surface mostly exacerbated the patterns in 
exposure compared to the base-case (i.e., 
afternoon) analysis. More details on the 
sensitivity analysis are in Figures S13–S15; a 
useful future research question is to explore 
how spatial patterns of exposure change by 
time of day.

Our findings indicate that areas with high 
levels of population density, land use mix, 
open space area, and retail area have higher 
rates of active travel, which is consistent with 
previous studies (Frank et al. 2005; Miranda-
Moreno and Fernandes 2011; Oakes et al. 
2007). However, trends in particulate concen-
trations were less clear by type of land use. 
Particulate concentrations seemed to increase 
(or remain unchanged) with increases in each 
land use factor; PN (BC) concentrations 
decreased slightly as open space (population 
density) increased. For particulate concentra-
tions, it is likely that the spatial location of the 
land use may play a larger role than the land 
use itself; for example, being located near a 
freeway, downtown, or in a residential neigh-
borhood may be a more significant factor in 

determining the local exposure concentration 
than the immediate land use at that specific 
location. Therefore, a planning goal may be 
to increase pocket areas (i.e., on the block 
or multi-block scale) of high land use mix, 
open space, or retail uses in residential areas 
to increase rates of active travel while miti-
gating exposure to air pollution. This idea may 
be especially of interest for areas such as the 
“inactive and clean” blocks defined above. A 
limitation of our approach is that we analyzed 
cross-sectional data sets and stratified by land 
use variables that sometimes were selected in 
our spatial models. We therefore were not able 
to infer causality from our results. However, 
despite this limitation, our work sheds light 
on how urban planners might allocate future 
development (i.e., land use patterns) and 
bicycle and pedestrian infrastructure (i.e., low-
exposure networks) with the goal of designing 
health-promoting cities.

We found that shifting active travel 
away from major roads to adjacent local 
roads could yield exposure reductions; this 
finding is consistent with previous studies 
(Cole-Hunter et al. 2012; Jarjour et al. 2013). 
Shifting active travel to adjacent streets (e.g., 
by strategically locating cycling infrastruc-
ture) may be a more realistic goal for cyclists 
than for pedestrians because pedestrians travel 
shorter distances and are less likely to follow 
alternative routes to destinations. In situa-
tions where exposure to air pollution is higher 
than acceptable for pedestrians, strategies that 
remove the pollution from the pedestrians 
may be of interest—for example, reducing 
bus traffic or the number of stops along a 
corridor with high pedestrian traffic (while 
relocating those stops and routes in close 
proximity to the pedestrian corridor). The 
finding that bicycle traffic was highest on off-
street trails suggests that cyclists may adjust 
routes to use enhanced infrastructure.

Exposure to air pollution during transport 
is only one component of overall exposure. 
A recent study of 62 participants in Belgium 
found that ~ 6% of participant’s time was 
spent in transport and accounted for ~ 30% 
of total inhaled dose of BC (Dons et al. 
2012). To put our findings in the context 
of overall exposure, we used a “back of the 
envelope” calculation to estimate the overall 
exposure reduction for a hypothetical cyclist 
who cycles frequently and chooses to move 
one block away from major roads to low-
traffic roads while cycling. We considered the 
following scenario: a) Moving over one block 
represents a 15% reduction in BC (Figure 3), 
b) two-thirds of all trips for this individual are 
by bicycle, and c) for each trip it is possible 
to move to an adjacent, low-traffic road for 
90% of the route (i.e., the origin and desti-
nation remain on high-traffic roads). Given 
these assumptions, we estimated the overall 

exposure reduction from this shift in cycling 
route as: 30% (total BC dose in transport) 
× 15% (exposure reduction from moving 
to low-traffic roads) × 66% (share of trips 
by bicycle) × 90% (share of route that it is 
feasible to move to a low-traffic road) = ~ 3% 
reduction in total exposure (~ 9% reduction 
in exposure during transport).

The overall reduction in exposure for 
this example is modest. However, if planners 
can encourage this type of shift for a large 
segment of the population (e.g., by consid-
ering exposure when locating infrastructure 
and future development patterns), the aggre-
gate effects (i.e., reductions in population-
level dose) could be noteworthy. Additionally, 
reducing exposure to one hazard (i.e., air 
pollution) could also include other health 
beneficial outcomes—for example, lower 
probability of an accident (i.e., low-traffic 
roads offer fewer interactions with motor 
vehicles) and increased physical activity 
(i.e., by cycling a slightly farther differ-
ence)—without the costs of implementing 
emission reductions.

Conclusions
We employed previously published spatial 
models to estimate block-level rates of active 
travel and particulate concentrations to assess 
population-level exposure during active travel 
in Minneapolis, Minnesota. Only ~ 2–3% of 
blocks were “sweet spot” blocks (high active 
travel, low air pollution); these blocks were 
mostly located a) near but just outside of the 
CBD or b) on off-street trails. Active travel 
and particulate concentrations correlated with 
street functional class and proximity to high-
traffic roads (leading to a spatial mismatch: 
20–44% of active travel occurred on the 
“active and exposed” blocks). Our findings 
suggest that minor shifts to the bicycle and 
pedestrian network may reduce overall 
exposure, for example, by moving cyclists 
away from pollution by strategic location of 
bicycle infrastructure on low-traffic roads 
and/or moving pollution away from pedes-
trians by shifting the location of emission 
sources (e.g., bus routes or stops). We found 
that the highest rates of active travel are in 
neighborhoods with high levels of population 
density, land use mix, open space, and retail 
area. However, trends in particulate concen-
trations varied for those land use factors; 
particulate concentrations increased with 
land use mix and retail area and were mostly 
unchanged with population density and open 
space area. Our results suggest that not only 
does the type of land use matter, but so too 
does the spatial location of the land use. This 
research may aid in planning for low-exposure 
infrastructure and development for cyclists 
and pedestrians to support health-promoting 
transportation choices.
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